Some current challenges in clathrate hydrate science: Nucleation, decomposition and the memory effect
نویسندگان
چکیده
منابع مشابه
Hydrate-phobic surfaces: fundamental studies in clathrate hydrate adhesion reduction.
Clathrate hydrate formation and subsequent plugging of deep-sea oil and gas pipelines represent a significant bottleneck for deep-sea oil and gas operations. Current methods for hydrate mitigation are expensive and energy intensive, comprising chemical, thermal, or flow management techniques. In this paper, we present an alternate approach of using functionalized coatings to reduce hydrate adhe...
متن کاملEffect of Surfactant-coated Particles on Clathrate Hydrate Formation
Clathrate hydrates are crystalline compounds composed of hydrogen-bonded water molecules that form polyhedral cavities and trap small guest molecules such as methane, carbon dioxide, cyclopentane (CP), and tetrahydrofuran (THF). Understanding the formation and dissociation of clathrate hydrates is of significant importance to addressing some global challenges such as greenhouse gas mitigation a...
متن کاملNMR/MRI study of clathrate hydrate mechanisms.
Clathrate hydrates are of great importance in many aspects. However, hydrate formation and dissociation mechanisms, essential to all hydrate applications, are still not well understood due to the limitations of experimental techniques capable of providing dynamic and structural information on a molecular level. NMR has been shown to be a powerful tool to noninvasively measure molecular level dy...
متن کاملEncapsulation kinetics and dynamics of carbon monoxide in clathrate hydrate
Carbon monoxide clathrate hydrate is a potentially important constituent in the solar system. In contrast to the well-established relation between the size of gaseous molecule and hydrate structure, previous work showed that carbon monoxide molecules preferentially form structure-I rather than structure-II gas hydrate. Resolving this discrepancy is fundamentally important to understanding clath...
متن کاملIncorporation of ammonium fluoride into clathrate hydrate lattices and its significance in inhibiting hydrate formation.
The stability of hydrate frameworks is influenced by guest molecules capable of hydrogen bonding with surrounding water molecules. Four remarkable features from the ammonium fluoride incorporation into a crystalline hydrate matrix provide important information on the thermodynamic stability, formation kinetics, structural characteristics, and molecular behavior in clathrate hydrate systems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Current Opinion in Solid State and Materials Science
سال: 2016
ISSN: 1359-0286
DOI: 10.1016/j.cossms.2016.03.005